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Abstract—A new direct-conversion wide-band (26-28.5 GHz) ~ ----- $ -
six-port receiver is proposed for mass-market wireless communi-
cations. This six-port receiver is designed to operate without the
need for precise power reading and the use of a digital signal pro-
cessor that is usually required in other receivers. The proposed re-
ceiver architecture is chosen to satisfy requirements of hardware & 2o
receivers used in high-speed QPSK communications. The receiver
contains a receiver front-end, QPSK demodulator, and carrier re-
covery module. A reverse modulation loop was used to provide a
rapid carrier recovery. The maximum bit rate is determined solely
by the limiting speed of the baseband module. This new hardware
receiver is proposed as a robust, rugged, low-cost receiver for use in Six-Port Module || Base-Band Module
wide K a-band wireless mass-market QPSK communicationssuch ~ ====== OPSK domoduietor
as local multipoint distribution system services, which is a prime
example of communication equipment requiring such receivers. Fig. 1. Ka-band direct digital-receiver architecture.
Bit-error-rate results are presented versus the noise and reference
signal phase shift.
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Index  Terms—Carrier  recovery, direct conversion, N presence of an Important Doppler effect..Therefore,.thIS new
monolithic-microwave  integrated-circuit (MMIC) technology, —T€CeIver presents a viable low-cost alternative for mobile termi-
QPSK modulation, six-port junction. nals.

l. INTRODUCTION Il. RECEIVER ARCHITECTURE AND OPERATING PRINCIPLE
: . Fig. 1 shows the hardware receiver architecture composed by
IRECT-CONVERSION receivers offer unique advantages ) o
9 9 a low-noise amplifier (LNA), a QPSK demodulator, and a car-

for wireless communications by reducing circuit com-. )
plexity and allowing a higher level of circuit integration than th'er recovery module. The QPSK demodulator contain two mod-

L . . - ) . ules, i.e., a six-port module and a baseband module designed to
traditional heterodyne receivers [1]. Six-port direct conversmr!ovide output-demodulated signalk 4nd Q) using the four

receivers have been proposed [2]-[4] as multimode or softwale

receivers operated with the digital signal processor (DSBBJtpUt signals of the six-port module [5].

programmed for a number of modulation schemes. The RML [8] provides a rapid carrier recovery from the

This paper presents recent results obtained on a ngll\:;SK modulation at millimeter-wave frequencies. The pro-

o i . - . . sed RML generates the reference signal using a phase shifter
six-port-based hardware-type direct digital receiver deS|gn8§mm"ed by output-demodulated signals and avoids the need

for high-speed QPSK communications. The proposed mit a phase-locked loop (PLL) with a local oscillator (LO). In

limeter-wave approach is also useful in the design of other. i . . .
s design platform, analog signal processing allows very high

hardware receivers at lower or higher operating frequenci .
: . . — ata rates (up to 60 Mb/s for a bit error rate (BER) less than
using either discrete [3] or distributed parameter [2], [ 0-6) and no DSP is needed for demodulation,

Six-port circuits. . . ) .
The excellent results obtained with a distributed parametersF'g' 2 gives the topology of the six-port module. The six-port

six-port junction [5]-[7] had a determining role to provide éuncuon is specially designed to demodulate a QPSK signal

monolithic-microwave integrated-circuit (MMIC) implementa—_LI'_flIng tlhrtge 90hybrid cgluplerfstsnd atW|tIk|.nsor|1 power dlvflf(_jgr. t
tion of this direct digital-receiver architecture. € refative power reading of th€ output signais gives suflicien

A carrier recovery module based on a reverse modulatiinﬁcormation t_o_determine the phase shift between the RF inputs,
loop (RML) is proposed and demodulation results are obtainﬂlf}reby realizing a QPSK demodulator [5].

[ll. MHMIC Six-PORT MODULE
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Fig. 5. Distributed parameter MMIC six-port module (siz& 4 mm).
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. i combination of both schemes. The distributed element imple-
._;; mentation yields a large size (1.39 rfynbut it has excellent
4 2 S-parameter performances. The discrete element coupler has a
To Video Amplifiers very small size, but the tolerances of its fabrication process over
this frequency range lead to poSrparameter performances.
Fig. 3. MHMIC six-port module (size 2& 23 mm). The hybrid implementation using high-impedance transmission

lines and capacities leads to very goSeparameter perfor-

wide-band matching circuit networks are connected to ti@ances.
six-port junction’s outputs [5]. Fig. 5 shows the RF topology of a wide-band millimeter-wave
Fig. 4 shows an excellent match at the RF inputs and an exddMIC distributed parameter six-port junction with integrated
lent isolation between inputss66) in the operating frequency RF Schottky diodes (marked by arrows) and their matching net-
band for the MHMIC six-port module. Therefore, the influenc#orks using 502 transmission lines. The circuit is realized in a
of dc offsets in the demodulating process is minimized. 100-um GaAs substrate and its size is approximateky4tmm.
Other simulated and measurSepbarameters of this six-port In order to reduce the size of the MMIC circuit, a new
junction were presented in [5]. The measured reflection coefipproach is proposed. The couplers are realized with
cientsS;; to Sgs are less than-24 dB and the isolation betweenhigh-impedance transmission lines and discrete elements
the LNA and LO ports, i.e.S5, is found to be at least27 dB. (shunt capacitors of 200-fF value, loaded near the ports of the

The transmission coefficients are close to the theoretical pfabrid couplers). Thus, the diameter of this coupler becomes
dicted value of-6 dB. 600 um compared with 133@m in the first realization. The

same Schottky diode is used in the second six-port circuit. The
V. MMIC Six-PORT MODULE RF Schottky d|OQe matchmg nerorks are also reqllzgd using
the shunt capacitors and high-impedance transmission lines.

The MMIC six-port module is fabricated on a 1@ Fig. 6 shows the RF topology of this new circuit. The size of

TriQuint Semiconductor GaAs substrate with a relativthis circuit is reduced to 2 3 mm, which is approximately

permittivity of 12.9. We have analyzed three different imple37% of the first six-port’s size.

mentations for the 90hybrid coupler in the frequency range of In order to characterize the MMIC six-port junction, a study

24-30 GHz: with distributed elements, discrete elements, andfdts S-parameters was made. The magnitude and phase of the
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frequency [GHz] is shown in Fig. 12. The LO and RF input power levels are

both set at-3 dBm. Waveforms displayed in Fig. 12 indicate
that each output voltage of the six-port junction has a single

) . imum value over a 36(phase shift between the RF input
S-parameters versus frequency are close to the predicted vaIlTér%)[(LO signal. This means thet,es, Vaurs. Vousr, Vaurs have

The results of both implementations, given in Figs. 5 and g, ; .

are practically similar. In the operating band, the magnitudgsmax'mum value for @ 90)’ 180, and_270 phase shift,

of S-parameters are close to the theoretical predicted valued %§pect|vely, between the input and LO signals.

—6 dB (Figs. 7 and 8) and the phase shifts between the trans-

mission parameters are multiples of3@ver a wide frequency

band (6 GHz), as shown in Figs. 9 and 10. The baseband module (see Fig. 1), composed of video am-
Fig. 11 shows an excellent match at the RF inputs amdifiers, low-pass filters, and ahand@ decoder, provides the

an excellent isolation between inputS;ss) in the operating output-demodulated signal.

frequency band for the MMIC six-port module (including the Fig. 13 shows the block diagram of th@nd@ decoder com-

Schottky diodes). Therefore, one can draw the same concluspmsed of high-speed comparators and a 4—2-bit encoder. The

as for the MHMIC circuit, i.e., the influence of dc offsets in thdour input voltages ard «V,,.;, whereA is the gain of video am-

demodulating process is minimized. plifiers. To obtain an extended dynamic range for the receiver,
The RF design of the six-port junction is such that only onthe decoder uses a relative comparison betwégp signals

of four possible modulation states is correctly identified, #b]. A dynamic threshold (e.g., proportional with the average

any given time, by an analogue decoder (baseband modul@)lue ofV, ;) is more suitable in the case of the MMIC six-port

Fig. 8. Magnitude of the transmissidfitparameters (RF to outputs).

V. BASEBAND MODULE
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In a QPSK modulated signal, four possible states of the input
signal phase are possible [e£45° and+135° for the QPSK
input phase represented in Fig. 15(a)]. In the RML process, a
ntrolled phase shifter was used to obtain the carrier recovery
nal (see Fig. 1). A 90multiple phase shift was added to the
SK input signal to cancel the original modulation. A time
delay (in our caset = 0.1 us) was used to compensate the

Table | shows the output and@ bit values of the encoder. g5 delay via the QPSK demodulator. A second phase shifter,
The output demodulated signals versus the phase shift betwegng, in Fig. 1, is capable of adjusting the appropriate reference

RF input and LO signals, as shown in Fig. 14, confirm the OBhase for the carrier recovery signal {46 Fig. 15(a)].
erating principle of the receiver. The four states of the output
signals(11,01, 00, 10) are obtained during a 36(hase shift
of input signal.

versions, where the maximum value of ed¢ly; is very well
marked versus the phase shift, but the minimum value is f
(Fig. 12). Therefore, if the RF signal level changes, the mag
nitude of V¢ signals also changes and the dynamic thresh
“updates” its value.

Fig. 16 shows the simulated results of the recovered carrier
spectrum. It is seen that the signal level of the carrier is 30 dB
above other spectral lines.

The reference signal level follows the input carrier level be-
cause a RML technique was used. Therefore, the dynamic range
The carrier recovery module uses the input QPSK and the @éthe receiver increases, compared to the case of a fixed refer-

modulated signals to provides the reference signal for the QP8Rce signal level, where a 40-dB dynamic range was mea-
demodulator. sured [5].

VI. CARRIER RECOVERY MODULE
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signal in spite of thet Doppler frequency shift. Therefore, the

) mobile applications at high bit rates of this new receiver are very

80N SN N L L Nl o promising.

0123456783 1?us191c]12 131415161718 19 20 Fig. 18 shows the block diagram of a BER simulation test

o _ . . bench. A pseudorandom bit sequenhe/(andIn Q) is gener-

o1 e veamensy ot o oo S, e sonel e using BER transmiter equipment, and a QPSK modlated
signal is obtained with a vector modulator. The propagation path

: . : is simulated and the input RF modulated signal i d
In conclusion, using the RML technique and a dynamfS simullated and the inpu mocuiated signal IS processe

threshold t ther I d . i the proposed{a—band direct digital receiver. The input and
res 600 dBo compstre_ dof“t’ aBV;;yl argt?] yg-gmlc rangeoutput waveforms were presented in Figs. 15 and 17. The BER
(over ) was obtained for a ess than receiver equipment evaluates that / andOut @ signals and

counts the errors. The measurement test bench was presented
in [5] and was used with a coherent carrier at 27 GHz. A con-
Simulations were performed, with an ideal model of the coitrolled phase shifter is presently in design to complete the carrier
trolled phase shifter and our tested model [5] of the QPSK deecovery module. For BER measurements with a coherent car-
modulator, using Advanced Design Software (ADS) of Agilertier, the LO power was set te20 dBm. For BER simulations,
Technologies, Palo Alto, CA. Results given in Figs. 15 and lfie same power level of the carrier recovery signal was obtained
support the new receiver architecture with RML. (see RML simulations in Fig. 16) and used in the demodulating
Fig. 15(a) shows the simulated phase of the pseudorandpmcess. For BER measurements and simulations, the bit rate
QPSK modulated signal and the phase of its carrier-recovengds set at 20 Mb/s.
signal. It is seen that “glitches” occur in the phase of recoveredFig. 19 shows the measured BER with a coherent carrier,
carrier each time the phase state of the carrier signal is changedtsus phase error from synchronism (MHMIC design), and it
However, Fig. 15(b)—(e) shows that the receiver is insensitii® seen that, for a shift error less than®°2the BER curve is
to “glitches.” Simulation results given in Figs. 15(b)—(e) als@entical with the theoretical one for the QPSK modulation [see
illustrates accuracy of recovered data for a pseudorandom fiig. 19(a)]. If the phase error rises, the BER rises rapidly, as
sequence. seen in Fig. 19(b) and (c).
Fig. 17 shows the phases of the carrier recovery and QPSKFig. 20 shows the BER simulations obtained with a MMIC
modulated signals with-250-kHz Doppler frequency shift on six-port using an RML carrier recovery circuit over the oper-
a carrier at a 4-Mb/s bit rate (corresponding to a relative speating band (26—28.5 GHz) and the results on measurements
up to 10 000 km/h for a 27-GHz carrier). It is seen that the casbtained with a MHMIC six-port using a coherent carrier
rier recovery signal follows the carrier of the QPSK modulateat 27 GHz. The simulated BER curve is identical with the

904

VIl. DEMODULATION RESULTS
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